Развитие через преодоление конфликтов

Сибирский Центр медиации

Развитие через преодоление конфликтов 

На пороге технологической революции

ГрафенРазработки на основе графена уже близки к массовому внедрению в экономику. Россия отстает, но еще может попасть в число лидеров одной из самых перспективных технологий нашего времени. За последнее десятилетие графен (однослойный, толщиной в один атом, материал, состоящий из упакованных на плоскости в шестиугольники атомов углерода) стал не только объектом десятков тысяч научных публикаций в год, но и множества перспективных практических применений, способных радикально изменить материальный мир вокруг нас.

Например, одно из активно исследуемых явлений — термоэлектрический эффект с использованием графена. Как известно, термоэлектрический эффект — это явление возникновения электродвижущей силы на концах соединенных разнородных проводников, контакты которых находятся при различных температурах, например в «термопаре». Эффект, получивший название эффекта Зеебека, известен давно, но с появлением графена он найдет множество применений.

 

Квантовый эффект — связанное поведение

 

Так, в недавней работе, опубликованной в Nature Communications (Tan, Z. B., Laitinen, A., Kirsanov, N. S. et al. Thermoelectric Current in a Graphene Cooper Pair Splitter, в которой есть авторы в том числе из МФТИ), с помощью микроскопической термопары в графене был получен квантовый эффект — связанное поведение («квантовая спутанность») электронов на удаленном расстоянии.

С графеном связывают надежды на применение в микроэлектронике, в создании квантовых компьютеров, некремниевых транзисторов на основе туннельного эффекта между двумя слоями графена.

Солнечные батареи

Тот же термоэлектрический эффект уже сейчас может позволить совершить прорыв в использовании самой перспективной и потенциально неисчерпаемой отрасли энергетики — солнечной. Сейчас солнечные батареи создаются на основе полупроводникового кремния, и у них есть принципиальные ограничения по КПД, они могу «уловить» только чуть больше половины (58%) солнечного спектра, а большая часть солнечной энергии уходит в тепло. Использование графеновой пленки позволит «поймать» не только большую часть солнечных фотонов, но и использовать наряду с полупроводниковым термоэлектрический эффект для преобразования солнечной энергии. Сейчас фотовольтаика (фотоэнергетика на основе полупроводников) достигла 22% КПД (еще недавно было 4%), но это практически предел, пленки на основе органических полупроводников могут прибавить 1–2%, а вот использование графена будет означать существенный рост КПД. Профессор кафедры низких температур Московского энергетического института Александр Дмитриев в своей лекции «Перспективная энергетика будущего на основе нанотехнологий и наноматериалов» предсказывает рост КПД в солнечных преобразователях до 35% на основе новых графеновых технологий.

Кстати, сейчас термоэлектрический эффект в наноматериалах уже применяется в дорогих марках машин: энергия тепла на выхлопной трубе и на других поверхностях, преобразованная с помощью специального покрытия в электрическую энергию, используется для питания аккумулятора и кондиционера. Но это, конечно, только начало массового применения.

Кроме того, графен позволяет создавать самые разнообразные композитные материалы с удивительными свойствами. Это звучит фантастически, но добавление графена практически в любой материал (металлы, цемент, керамика, полимеры, краски, покрытия, стекло и др.) улучшает его свойства прочности, долговечности и устойчивости к внешним воздействиям. Например, добавление менее 0,05% по массе графена в бетон делает бетон мелкозернистым, закрывает поры, делает его практически водонепроницаемым, скорость его созревания уменьшается, прочностные свойства значительно возрастают.

Обычная акриловая краска при добавлении небольшого количества графена становится проводящей, что уже сейчас может найти множество практических применений: при подключении 18 вольт к поверхности стенка нагревается, что, например, может быть использовано как эффективное и дешевое средство против обледенения крыш и ливневых стоков.

Примеры можно продолжать, но каждый день мы убеждаемся, что стоим на пороге открытия нового мира материаловедения, когда на основе графена будут разработаны сотни новых технологий.

Полунаш графен


Впервые получить и исследовать графен удалось в 2004 году в Манчестере физикам российского происхождения Андрею Гейму и Константину Новоселову, за что в 2010 году они получили Нобелевскую премию. Это пример потрясающего открытия, которое задним числом кажется очень простым. Графен был получен путем многократного отшелушивания слоев от обычного графита — материала, из которого делаются карандаши и аноды в батареях (кстати, сейчас понятно, что графеновые аноды эффективнее). Графит — обычный трехмерный кристалл, состоящий из атомов углерода, самая распространенная его модификация из шестиугольников в пространстве. Ученые получили графен практически из мусора путем отрыва от графита одного слоя шестиугольников. То, что другие годами выбрасывали, а именно использованный скотч, которым очищали графит, Гейм и Новоселов решили изучить. Оказалось, что вопреки теоретическим предсказаниям о невозможности «двухмерного кристалла» на поверхности оксида кремния стабильно «зацепились» довольно большие (порядка квадратного миллиметра) слои графена. Тогда же были изучены и его потрясающие свойства — удивительная проводимость и прочие электрические и квантовые явления в плоском материале и между слоями графена.

Очень быстро было замечено, что на основе графена в будущем, вероятно, может быть создана новая электроника, идущая на смену кремниевой, и уж точно новая химия катализаторов и материаловедение, с чем и связано быстрое нобелевское признание открытия. И если в 2000-е графеном занимались лишь в нескольких западных научных лабораториях, то теперь его активно исследуют и изучают во всем мире: более ста тысяч публикаций за последние пятнадцать лет.

Сейчас, судя по всему, приближается время, когда за научным бумом последует этап технологических инноваций, востребованных в экономике.

Добровольные пожертвования 

ПожертвованияСоюз "Сибирский Центр медиации"  ИНН 5406195342 КПП 860201001 Расч. счёт 40703810967170001448 в ЗАПАДНО-СИБИРСКОЕ ОТДЕЛЕНИЕ№8647 ПАО СБЕРБАНК в городе Тюмени.,  БИК 047102651 Корр. Счёт 30101810800000000651 Назн. платежа: добровольные пожертвования  НДС нет

 

Поиск